RF4CE – The wireless remote control that keeps coming back

The consumer electronics industry has always had something of a love-hate relationship with remote controls.  It’s painful to design and ship a new remote control with every product, but attempts to come up with an interoperable standard have been plagued with problems.  As a result our homes are littered with lost and unused remote controls.  A few independent companies have tried to solve the problem by producing decent, but generally expensive universal controls, but they’re still a rarity around the home.

In the early days of remotes, the dominant technology was ultrasonic, but they’ve evolved to the point today that almost all use infra red (IR) transmitters.  IR is cheap and directional; the latter feature being useful in a world where there is limited interoperability and interference can be mitigated by pointing the remote control in the right direction.  However, it’s a one way connection, as keeping a photo diode alive to look for a signal coming back from the TV would decimate the battery life.

As the audio-video equipment we buy has become more sophisticated, manufacturers have been looking for an alternative technology that would allow low power, two-way communication between equipment and remote.  The obvious solution is wireless, but the question is which one?  A few years ago chip vendors who were looking for customers for their 802.15.4 radio ICs, decided to put together a standard to try and sell a few more of their chips.  (802.15.4 is underlying radio standard used by ZigBee and other specialist wireless stacks, none of which are shipping in the volumes required to make chip manufacture very profitable.)  That standard became known as RF4CE (Radio Frequency for Consumer Electronics) and was eventually embraced by the ZigBee Alliance.  The Japanese AV industry bought the story and have recently begun shipping RF4CE handsets into their local market.  As the volumes have ramped up, rumours are growing that an increasing number are being returned because they don’t work.  It’s too early to be sure what the reason is, but when you delve into the detail of the RF4CE standard it looks a bit flaky.  That could herald a golden opportunity for Bluetooth low energy, which is charging onto the remote control scene like a wireless knight in shining armour.

The RF4CE specification was released by the ZigBee Alliance in March 2009.  Although it carries the ZigBee name, it’s not a mesh network, nor is it interoperable with the better known ZigBee 2007 or ZigBee PRO standards.  Instead it uses a much simplified network layer (NWK), which is designed for less critical applications where the two prime requirements are battery life and low latency.  Low latency means that when you press a button, the effect at the other end, typically the TV, is essentially instantaneous.  Users won’t accept a wireless standard where there’s a significant delay between pushing a button to change channel or mute the sound and seeing having it take effect.

RF4CE operates in the same 2.4GHz spectrum that is used by ZigBee, Bluetooth, Wi-Fi, microwave ovens, baby alarms and proprietary wireless solutions, which gives it a problem that every other radio operating in this band has: it needs to cope with interference from other devices.

The method chosen by the RF4CE standard is to use the concept of frequency agility.  Frequency agility allows a network coordinator to set up a network on the assumption that it will always work on one fixed frequency, but, if it discovers that it is experiencing interference, then the whole network moves to a different, fixed frequency.  The hope is that the system will eventually find a frequency where it can operate without interference.

To work, the people writing the standard need to determine which frequencies the system should operate on and which one the network coordinator should choose when the system first starts.  That means you need to look at what else is likely to be transmitting in the band.  It’s difficult to predict where microwave ovens, baby alarms and the like will transmit, as manufacturers are free to let these transmit anywhere they want within the frequency band.   Rather counter-intuitively, Bluetooth is not normally a problem, as it is a frequency hopping system, changing the frequency it transmits on many times a second.  So if it interferes with, or experiences interference, it will move to a different frequency before it retries its connection.  The big invisible elephant occupying the 2.4GHz spectrum is Wi-Fi.  Wi-Fi access points operate at a fixed frequency like ZigBee and RF4CE, which is generally set for the life of the access point when it is initially set up.  It’s a big spectral elephant, with a bandwidth of 22MHz, compared to the slim-line 2MHz of an 802.15.4 channel, or 1MHz of Bluetooth.  Which means it can block a large chunk of the spectrum.

Wi-Fi operates on eleven overlapping channels.  Because these channels are so wide, there are three non-overlapping channels which access points are normally set to operate on.  These are spaced apart so they don’t interfere with each other.  These are known as channels 1, 6 and 11.  In order to make it simple to design, RF4CE only operates at three different channels, which are ZigBee Channels 15, 20 and 25.  (To confuse everyone, these numbers have absolutely nothing to do with the channel numbers of Wi-Fi.  You don’t need to know why they are numbered that way, but if you do, buy the book.)  What you do need to know is that these are neatly chosen to fit into the gaps between the common Wi-Fi channels to minimise the chance of interference.

rf4ce1.gif

That’s nice in theory, but the real world has a nasty habit of kicking theory in the teeth.  To see what that means, we need to see what the frequency channels look like in real life.  If you have Wi-Fi on your mobile phone or laptop, there are some neat pieces of software that you can use to display the local Wi-Fi networks.  Have a look at the excellent WiFi Analyzer for Android, or the more complex Netsurveyor for a PC.  These show you that the real world is not like the diagram above – there’s a lot more happening in the spectrum.  If you don’t have one of these, read a piece of research done by Washington University in St Louis.  They mapped the spectrum usage in student accommodation on each of the 2MHz wide ZigBee channels over the course of a 24 hour day.  What they found is shown below:

rf4ce3.gif

The graphs indicate what the throughput is for a ZigBee transmitter set to continuously send data on each channel.  What it shows is that on every one of the ZigBee Channels in the 2.4GHz spectrum (channels 11 to 26), there are periods within the day when the throughput falls to zero.  In other words, there are large chunks of time when an RF4CE transmission would not be able to get through.  The research did not determine what caused this, but pointed out that a radio system that works on a fixed channel will experience periods where its transmissions will be blocked.

If you think about it, there’s quite a lot in common between student housing in St Louis and flats in Japan.  In both cases rooms tend to be small and located close together, and both sets of occupants have a passion for new technology.  So it’s not unexpected that RF4CE remote controls shipped to Japanese consumers might experience interference.  As we mentioned above, RF4CE has a system to attempt to cope with interference, which is called frequency agility.  When a node detects that a channel is not working, it sets in train a process to move every connected device to one of the other two available channels.  The expectation is that this will be a rare event, and as a result, it’s not designed to be a quick change, but can take several seconds.  When that happens once a month, a user can live with it.  When it happens multiple times a day, it renders a remote control useless.

That’s not good, but matters get even worse for RF4CE in Japan.  As we saw above, the three frequencies that RF4CE operates on have been chosen to avoid the Wi-Fi channels 1, 6 and 11.  When I said that these avoided the common WI-FI channels I wasn’t being totally honest.  They do in the US, but they don’t anywhere else.  I’m assuming that these channels were specified by engineers in the US.  The reason I’m assuming that is that in Europe and Japan the available 2.4GHz spectrum is wider, extending up to channel 13, or in some countries, channel 14.

  rf4ce2.gif

This means that the top channel for RF4CE falls bang in the middle of the Wi-Fi channel which is often set as the default for access points in Europe and the Far East.  That effectively reduces RF4CE to operating over two fixed channels, and one of these partially overlaps Wi-Fi channel 7, which is also used outside the US.  So it only has one channel which might be clear, and that’s not guaranteed.  It means that RF4CE has nowhere to escape to, making it look like a standard which has been designed to fail.

And that appears to be what’s happening in Japan.  As a result, manufacturers are looking to migrate to Bluetooth low energy for their next generation of remote controls.  Bluetooth low energy employs adaptive frequency hopping, working at 37 different frequencies across the same 2.4GHz band.  It’s a scheme which makes it very robust to interference, so that even in a noisy spectrum it has an excellent chance of working.  Moreover its adaptive capability lets it dynamically exclude parts of the spectrum where it detects interference, allowing it to have the best chance of low latency throughout the course of the day.  As well as being robust to interference, Bluetooth low energy offers other advantages.  Not least of which is that because it is being built into mobile phones, users can use those to control devices.  The first prototypes are currently being tested by AV equipment vendors.  If all goes well, your next TV, DVD player or Set Top Box is likely to be controlled by Bluetooth.